2411/302 INORGANIC CHEMISTRY Oct/Nov. 2023 Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN ANALYTICAL CHEMISTRY

INORGANIC CHEMISTRY

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination: Answer booklet;

Non-programmable scientific calculator.

This paper consists of TWO sections; A and B.

Answer ALL the questions in section A and any THREE questions from section B in the answer backlet provided.

Each question in section A carries 4 marks while each question in section B carries 20 marks. Maximum marks for each part of a question are as shown.

Candidates should answer the questions in English.

This paper consists of 8 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

© 2023 The Kenya National Examinations Council

Turnover

SECTION A (40 marks)

Answer ALL the questions in this section.

Magnesium occurs in nature in three isotopic forms as shown in table I. Calculate the atomic 1. (4 marks) mass of magnesium to 2 decimal places.

Table I

Isotope	% Abundance	amu
^{24}Mg	78.70	23.985
^{26}Mg	11.17	25.983
²⁵ Mg	10.13	24.986

- The ionic radii of sodium and potassium ions are 102 pm and 138 pm respectively. Identify, X2. with explanation, the compound that has the stronger ionic attraction between sodium chloride and potassium chloride. (4 marks)
- A compound A on heating gives a colourless gas and a solid residue. The residue is dissolved × 3. in water to obtain solution B. When excess CO₂ is bubbled through the aqueous solution B, a white precipitate is initially formed, which turns into colourless solution C. Gentle heating of solution C gives back compound A. A chloride of the metal in compound A imparts a red colour to a flame.

(a)	Identify compound A, as well'as solutions B and C.	(3 marks)
(b)	Write an equation for the reaction that occurs when solution C is	gently heated. (1 mark)
(a)	Complete the equations for the following reactions:	
	(i) $I_2 + Cl_2 \longrightarrow$ (excess)	(1 mark)
	(ii) $I_2 + Cl_2 \longrightarrow$ (equimolar)	(1 mark)
(b)	Explain why the boiling point of the compound formed in (ii) is 2 than that of Br ₂ even though the molecular size of both is nearly t	40 °C higher the same. (2 marks)
(a)	Write electronic configuration of the following ions:	
	(i) $Cu^{2+};$ (ii) $Sc^{3+};$ (iii) $Fe^{3+}.$	(1 mark) (1 mark) (1 mark)
(b)	Identify the ions in (a) that would form a coloured complex.	(1 mark)

2

11

21 26

2411/302 Oct JNov. 2023

(b)

4

5.

6.	Sodium -24 with a half life of 15 hours is used to study blood circulation. A patient is inject with ²⁴ NaCl solution with an activity of 2.5×10^9 d/s. Calculate how much activity is present in the patient's body after 4.0 days. (4 matrix)										
7.	Silico hydro	on dioxide does not react with hydrochloric acid but reacts with sodium oxide.	1								
	` (a)	state one property of silicon dioxide that can be deduced from this observ	vation. (2 marks)								
X	(b)	write an equation for the reaction between silicon dioxide and sodium hydroxide.	(2 marks)								
8.	Chro	mium forms the two oxides CrO_3 and CrO .	an a								
	(a)	Name the oxide that forms a more acidic solution.	(1 mark)								
	(b)	Explain the answer in (a).	(3 marks)								
9.	In aq distir nitrat	ueous solution, sodium chloride $(NaCl)$ and sodium carbonate (Na_2CO_3) agaished by simple test-tube reactions using either dilute sulphuric acid or a see. State the observation when dilute sulphuric acid is added to:	can be cidified silver								
	(a)	NaCl(aq);-	(2 marks)								
	(b)	Na2CO3(aq).	(2 marks)								
10.	Draw	Lewis structures for the following molecules;									
	(a)	SO_3 ;	(1 mark)								
	(b)	$CH_2B au_2;$	(1 mark)								
	(c)	HCN;;	(1 mark)								
	(d)	OF_2 .	(1 mark)								

2411/302 Oct.JNov. 2023 YC.

SECTION B (60 marks)

Answer any THREE questions from this section

Π. (a) non-polar, covalent or metallic: Identify the type of bond for each of the following whether ionic, polar covalent,

(i)	3 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
State whether the following molecules are polar or non-polar:	S - O bond in K_2SO_4 ; bonds in F2; bonds in K_2O ; C - C bonds in C_3H_8 ; bonds in Ba.

(ii)	
Expla	(II)
in the answers in (i).	CO_2 ; $CHCl_3$.
(2 marks	(1 mark (1 mark

(2 marks)

0 is more electronegative, and an arrow to point from the less electronegative to the more electronegative atom. For each of the following bonds, use delta notation (δ^+ and δ^+) to indicate which atom

(ii)	Ē
N - O.	C-Cl;

(1 mark) (1 mark)

Table II shows the melting points of sodium, chlorine and sodium chloride.

Table II

Melting Point (°C)	(
98	Sodium
-101	Chlorine
801	Sodium chloride

- Ξ
- Draw the structure of NaCl showing the sizes of the component ions.
- Ξ its constituent elements. Explain why the melting point of sodium chloride is much higher than that of

R

(2 marks)

(4 marks)

(1 mark)

OctJNov. 2023 2411/302

(iv)

crystalline like NaCl.

Explain why lead sulphate. (PbS) is insoluble in water even though it is

E

Explain why the melting point of beryllium chloride is half that of NaCl

4

Be CI Wall

(2 marks)

- 12. (a) With the aid of a chemical equation, describe the observation made when magnesium is burned in oxygen. (4 marks)
 - (b) Figure 1 shows some reactions involving magnesium and its compounds.

2411/302 Oct JNov. 2023

13.

(a)

(b)

5

Turn over

	(c)	Write	balanced nuclear equations for the formation of:	
		(i)	$\frac{48}{22}$ T _i through positron emission;	(2 marks)
		(li)	silver - 017 through electron capture.	(2 marks)
		(iii)	polonium - 206 through α – decay.	(2 marks)
	(d)	Expla	in whether the nuclide ³² S is expected to be stable or radioactive.	(4 marks)
4.	(a)	(i)	Write electronic configurations for:	
			(i) $Cr^{3+}; 2P$ (ii) $Mn^{2+}; 2S$ (iii) $CO^{2+}; 2T$	(2 marks) (2 marks) (2 marks)
		X(ii)	Describe the observations made when dilute $KM_nO_{4(aq)}$ is added slowhile shaking to an acidified warm solution of $FeSO_{4(aq)}$ until the R is in a large excess.	owly KM _n O _{4(aq)} (4 marks)
		(iii)	Explain the reason for the final colour change in (ii).	(2 marks)
		(iv)	Identify the type of reaction occurring in (ii) and write the ionic equination.	uation for the (2 marks)
	X (p)	A gre confi aqueo	een solution X contains $[Fe(H_2O)_6]^{2+}$ ions. The presence of the ions rmed by reacting separate samples of solutions X with aqueous ammonous sodium carbonate.	can be onia and with
		(i)	Explain the observations made for the reaction between the ions an	d:
			 (I) aqueous ammonia; ^{𝔅𝔅} (II) aqueous sodium carbonate. ^{𝔅𝔅} 	(2 marks) (2 marks)
		(ii)	Write equations for each of the reactions in (i).	
			 excess chloride ions; excess ammonia. 	(1 mark) (1 mark)
			2	

2411/302 Oct JNov. 2023 6

15. (a) Table III shows the variation in properties of the group VII elements.

Table III

(ii)

Halogen	Melting point /*	Colour
Chlorine	-101	
Bromine	-7	
lodine	114	

- (i) Complete the table by identifying the colour of each element in its normal state at room temperature. (3 marks)
- (ii) Explain why the melting points of the halogens increase from chlorine to iodine. (2 marks)
- (iii) The halogens form many interhalogen compounds, including bromine monochloride, *BrCl*.
 - (1) give the electronic configuration of bromine and chlorine; (2 marks)
 - (II) draw a Lewis dot diagram of the BrCl molecule. (2 marks)

(b) Chlorine and BrCl each react with potassium iodide, KI.

(i) Explain the observation made when Cl_2 gas is bubbled through aqueous KI for several minutes:

((I) (II)	at the initial time; after several minutes.	(2 marks) (2 marks)
,	Write	an equation for the reaction between BrCl and KI.	(2 marks)
		U sources in the tip of a ma	tch stick. On

- (c) Phosphorous sulphide, P_4S_3 , is used in small amounts in the tip of a match stick. Or striking a match stick, this compound burns.
 - (i) Write an equation for the reaction. (2 mark)
 - (ii) Both oxides formed in (i) dissolve in water to give acidic solutions. Write an equation for the reaction of each oxide with water. (3 marks)

29 IN М М C T

The Periodic Table of the Elements

3

		T																	
0	(18) 4.0 He Meilum	20.2 Ne	00 10	s g ≹	18	چ 8	krypton 36	131.3		54 [222]	Ru	86	84 504	oganesson 118	176.0	E	Nutetium 71	[262]	tawrencium 103
7	(17)	19.0 1	6 10	S D N	17	2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	35	126.9	lodine	210]	At	85	(Fg)=	tennessine 117	179.0	ę	ytterbium 70	[259]	nobelium 102
9	(16)	16.0 0	8	y on a	16	2.8	asiantum 34	127.6	tellurium	26 [209]	Per la	2	۲[38]	ivernorium 116	169.0	Ę	thullum 69	(258) Md	vendelevium 101
5	(15)	14.0 N	H		15	2	araenic 33	121.8	antimony	209.0	blanuth thurth	83	[289] Mc	115	167.3	ш	erbium 68	[257]	100
4	(14)	12.0 Carbon	8	Nicon Silicon	14	8	germanium 32	118.7		207.2	£ 3	82	[289] F1	flerovium 114	164.9	f	holmlum 87	1282 1282	Insteinium 99
С	(13)	10.8 8.00	27.0	aluminium	13 69.7	9	31 31	114.8 In	mipu	204.4	thallium	81	5 86]	nihonlum 113	162.5	2	ysprosium 66	ဒ ္ဌဒ	alifornium ei 98
				(12)	65.4	ន	30	112.4 8	cadmium 48	200.6		80	88] 88]	xopemickum 112	158.9	₽	65 65	[247] BK	erkellum ca
				(11)	63.5	3	50	107.9	allver 47	197.0	P og	62	B ²⁸¹	centgenium c	157.3	8	edolinium 64	C D D	ourtum 96
				(01)	58.7	N	28	₽ ₽	palladium 46	195.1	platinum	78		armstadtium r	152.0	۲. ۲	63 09	Am	nerlclum 95
				(6)	58.9	Sobat Sobat	27	P .9	45	192.2	Iridium	11	Mt	109	160.4	S	62 62	Pu [244]	utonium ar 94
				(8)	55.8		C 26	<u>j</u> z	ruthenium 44	190.2	osmlum	76	[270]	108	[146]	Ē	61 s	[237] Np	otunium pi
					6.95	MIN	25	6	technetium 43	186.2	monium	75	B	107	144.2	PV	60 pu	€38.0	anlum nel 92
				(9)	52.0	Chromium Chromium	24	Mo	molybdenum 42	183.8	tungsten	4	8. 8.	106	140.9	5	69	231.0	actinium ur 91
				(5)	50.9	vanadium	23	N P8	41 41	180.9 Ta	tantalum	2	6	105	140.1	8	58	32.0 132.0	orium prot 90
				(4)	47.9	titanium	22	Å	40	178.5 H	hafnlum	1001	B	104					5
		E		(3)	45.0	ecandium	21	7	39	138.9	anthanum 57	L CON		69		9S			
	(2) 9.0	berylliur.	24.3 Mg	magnesiur 12	64 C	calcium	87 G	3	38	137.3 Ba	barlum	Lace		88		anthanid		Actinides	
	(1) 6.9	lithiu Brithi	23.0 Na	sodium 11	39.1 X	potaseium	RF F	8	37	132.9	caeslum 55	[000]		87		58 - 71 L		0 - 103 /	
	TH	IS IS	TH	IE I	LAS	ST	PF	RIN	TE	D	PA	G	Е.			*		đ: +	-

2411/302 Oct JNov. 2023

8